skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Ligett, Katrina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ligett, Katrina; Gupta, Swati (Ed.)
    We give the first closed-form privacy guarantees for the Generalized Gaussian mechanism (the mechanism that adds noise x to a vector with probability proportional to exp(-(||x||_p/σ)^p) for some σ, p), in the setting of answering k counting (i.e. sensitivity-1) queries about a database with (ε, δ)-differential privacy (in particular, with low 𝓁_∞-error). Just using Generalized Gaussian noise, we obtain a mechanism such that if the true answers to the queries are the vector d, the mechanism outputs answers d̃ with the 𝓁_∞-error guarantee: 𝔼[||d̃ - d||_∞] = O(√{k log log k log(1/δ)}/ε). This matches the error bound of [Steinke and Ullman, 2017], but using a much simpler mechanism. By composing this mechanism with the sparse vector mechanism (generalizing a technique of [Steinke and Ullman, 2017]), we obtain a mechanism improving the √{k log log k} dependence on k to √{k log log log k}, Our main technical contribution is showing that certain powers of Generalized Gaussians, which follow a Generalized Gamma distribution, are sub-gamma. In subsequent work, the optimal 𝓁_∞-error bound of O(√{k log (1/δ)}/ε) has been achieved by [Yuval Dagan and Gil Kur, 2020] and [Badih Ghazi et al., 2020] independently. However, the Generalized Gaussian mechanism has some qualitative advantages over the mechanisms used in these papers which may make it of interest to both practitioners and theoreticians, both in the setting of answering counting queries and more generally. 
    more » « less
  2. Ligett, Katrina; Gupta, Swati (Ed.)
    The 2020 Decennial Census will be released with a new disclosure avoidance system in place, putting differential privacy in the spotlight for a wide range of data users. We consider several key applications of Census data in redistricting, developing tools and demonstrations for practitioners who are concerned about the impacts of this new noising algorithm called TopDown. Based on a close look at reconstructed Texas data, we find reassuring evidence that TopDown will not threaten the ability to produce districts with tolerable population balance or to detect signals of racial polarization for Voting Rights Act enforcement. 
    more » « less
  3. Maslej, Nestor; Fattorini, Loredana; Perrault, Raymond; Gil, Yolanda; Parli, Vanessa; Kariuki, Njenga; Capstick, Emily; Reuel, Anka; Brynjolfsson, Erik; Etchemendy, John (Ed.)
    AI has entered the public consciousness through generative AI’s impact on work—enhancing efficiency and automating tasks—but it has also driven innovation in education and personalized learning. Still, while AI promises benefits, it also poses risks—from hallucinating false outputs to reinforcing biases and diminishing critical thinking. With the AI education market expected to grow substantially, ethical concerns about the technology’s misuse—AI tools have already falsely accused marginalized students of cheating—are mounting, highlighting the need for responsible creation and deployment. Addressing these challenges requires both technical literacy and critical engagement with AI’s societal impact. Expanding AI expertise must begin in K–12 and higher education in order to ensure that students are prepared to be responsible users and developers. AI education cannot exist in isolation—it must align with broader computer science (CS) education efforts. This chapter examines the global state of AI and CS education, access disparities, and policies shaping AI’s role in learning. This chapter was a collaboration prepared by the Kapor Foundation, CSTA, PIT-UN and the AI Index. The Kapor Foundation works at the intersection of racial equity and technology to build equitable and inclusive computing education pathways, advance tech policies that mitigate harms and promote equitable opportunity, and deploy capital to support responsible, ethical, and equitable tech solutions. The CSTA is a global membership organization that unites, supports, and empowers educators to enhance the quality, accessibility, and inclusivity of computer science education. The Public Interest Technology University Network (PIT-UN) fosters collaboration between universities and colleges to build the PIT field and nurture a new generation of civic-minded technologists. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  4. Feldman, Vitaly; Ligett, Katrina; Sabato, Sivan (Ed.)
    Many real-world problems like Social Influence Maximization face the dilemma of choosing the best $$K$$ out of $$N$$ options at a given time instant. This setup can be modeled as a combinatorial bandit which chooses $$K$$ out of $$N$$ arms at each time, with an aim to achieve an efficient trade-off between exploration and exploitation. This is the first work for combinatorial bandits where the feedback received can be a non-linear function of the chosen $$K$$ arms. The direct use of multi-armed bandit requires choosing among $$N$$-choose-$$K$$ options making the state space large. In this paper, we present a novel algorithm which is computationally efficient and the storage is linear in $$N$$. The proposed algorithm is a divide-and-conquer based strategy, that we call CMAB-SM. Further, the proposed algorithm achieves a \textit{regret bound} of $$\tilde O(K^{\frac{1}{2}}N^{\frac{1}{3}}T^{\frac{2}{3}})$ for a time horizon $$T$$, which is \textit{sub-linear} in all parameters $$T$$, $$N$$, and $$K$$. 
    more » « less